Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells

Identifieur interne : 000C50 ( Main/Repository ); précédent : 000C49; suivant : 000C51

Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells

Auteurs : RBID : Pascal:13-0158787

Descripteurs français

English descriptors

Abstract

Growth of semiconducting nanostructures on graphene would open up opportunities for the development of Flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0158787

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells</title>
<author>
<name sortKey="Park, Hyesung" uniqKey="Park H">Hyesung Park</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chang, Sehoon" uniqKey="Chang S">Sehoon Chang</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jean, Joel" uniqKey="Jean J">Joel Jean</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Jayce J" uniqKey="Cheng J">Jayce J. Cheng</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Araujo, Paulo T" uniqKey="Araujo P">Paulo T. Araujo</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name>MINGSHENG WANG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bawendi, Moungi G" uniqKey="Bawendi M">Moungi G. Bawendi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Chemistry, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dresselhaus, Mildred S" uniqKey="Dresselhaus M">Mildred S. Dresselhaus</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bulovic, Vladimir" uniqKey="Bulovic V">Vladimir Bulovic</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name>JING KONG</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gradecak, Silvija" uniqKey="Gradecak S">Silvija Gradecak</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
<orgName type="university">Massachusetts Institute of Technology</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0158787</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0158787 INIST</idno>
<idno type="RBID">Pascal:13-0158787</idno>
<idno type="wicri:Area/Main/Corpus">000F31</idno>
<idno type="wicri:Area/Main/Repository">000C50</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Americium</term>
<term>Arrays</term>
<term>Conducting polymers</term>
<term>Conjugated polymer</term>
<term>Electrical properties</term>
<term>Graphene</term>
<term>Growth mechanism</term>
<term>Indium oxide</term>
<term>Interlayers</term>
<term>Lead sulfide</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>Optoelectronic devices</term>
<term>Photovoltaic cell</term>
<term>Quantum dots</term>
<term>Semiconductor materials</term>
<term>Solar cells</term>
<term>Thiophene derivative polymer</term>
<term>Tin oxide</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Graphène</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Cellule solaire</term>
<term>Mécanisme croissance</term>
<term>Nanostructure</term>
<term>Dispositif optoélectronique</term>
<term>Propriété électrique</term>
<term>Réseau(arrangement)</term>
<term>Couche intermédiaire</term>
<term>Point quantique</term>
<term>Polymère conjugué</term>
<term>Américium</term>
<term>Oxyde d'étain</term>
<term>Oxyde de zinc</term>
<term>Semiconducteur</term>
<term>Polymère conducteur</term>
<term>Sulfure de plomb</term>
<term>Thiophène dérivé polymère</term>
<term>Oxyde d'indium</term>
<term>Dispositif photovoltaïque</term>
<term>ZnO</term>
<term>Substrat graphène</term>
<term>PbS</term>
<term>8105T</term>
<term>8105U</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Growth of semiconducting nanostructures on graphene would open up opportunities for the development of Flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PARK (Hyesung)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHANG (Sehoon)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JEAN (Joel)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHENG (Jayce J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ARAUJO (Paulo T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MINGSHENG WANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BAWENDI (Moungi G.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DRESSELHAUS (Mildred S.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BULOVIC (Vladimir)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>JING KONG</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>GRADECAK (Silvija)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemistry, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts, 02139</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>233-239</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000173269440400</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0158787</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Growth of semiconducting nanostructures on graphene would open up opportunities for the development of Flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Graphène</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Graphene</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Graphene</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Couche intermédiaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Interlayers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Polymère conjugué</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Conjugated polymer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Polímero conjugado</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Américium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Americium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Polymère conducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Conducting polymers</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Sulfure de plomb</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Lead sulfide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Plomo sulfuro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Substrat graphène</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>PbS</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8105U</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0158787
   |texte=   Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024